Precision optics.

- Microlithography (EUV, DUV)
- Sensors and filters
- Laser and mirror coatings
- Camera lenses and systems
- Night vision and distance control
- Microscopes and telescopes
- Optoelectronics
- Consumer optics
- Catalog optics

Innovations for a better world.
Precision optics. **Our track record of pioneering achievement is unmatched.**

As one of the world leaders in thin-film technology, we develop and manufacture vacuum deposition equipment for a broad range of applications.
Originally, the foundation for the Bühler Leybold Optics company’s present-day success was laid by inventors Ernst Leybold and Wilhelm Carl Heraeus 160 years ago. Today, we are a globally active high-tech company, with the business area’s headquarters in Alzenau (Germany) and subsidiaries in Cary (USA) and Beijing (China). Worldwide, we employ over 300 employees dedicated solely to thin-film coating applications. A top priority for us is innovation leadership in key areas such as sputtering, PECVD, plasma-assisted evaporation, machine automation and related software, as well as world-class customer service.

Precision optics coatings is Bühler Leybold Optics’ classic domain. We are proud that our numerous technological breakthroughs shaped the entire industry through the last decades up to today:

1975  First optical monitoring system for layer control
1984  First box coater with fully-automatic optical monitoring
1992  Invention of the Advanced Plasma Source APS
1998  Introduction of coating systems for production of telecom applications like DWDM filters
2003  Introduction of plasma-assisted magnetron-sputtering (PARMS) process technology in the HELIOS machine
2003  Introduction of the NESSY magnetron-sputtering system for EUV applications
2004  Introduction of intermittent optical monitoring directly on the calotte
2006  Introduction of HELIOS for bio-sensor market
2010  Introduction of the LION 300, an RF ion-source for high-quality filters
2011  Commercialization of NESSY mass-production system for EUV applications
2013  Laser coatings for laser applications
2014  Developed smallest and largest sputtering machine for precision applications
   − DEIMOS for astronomical mirror-coatings
   − STARpro for smallest optical filter production sizes
2015  HELIOS qualified for optical sensors in consumer optics and automotive applications
2017  Ion Beam Sputtering (IBS) for best quality coatings of high-end optics
2018  Ion Beam Figuring (IBF) for ultra-precise corrective polishing of surfaces

As the leader in this field, Bühler Leybold Optics invests unparalleled resources in research and development for sputtering, PECVD and evaporation technologies.
Solutions for precision optics. 
Customer benefits are our daily business.

As an important step toward expanding the Advanced Materials Business within Bühler with a strategic focus on environmentally friendly and energy-saving technology, Leybold Optics was acquired in May 2012. With this acquisition, Leybold Optics became part of a family-owned conglomerate of specialists and technology partners for plant, equipment and services for manufacturing advanced materials and for processing basic foods. Not only does Bühler now hold the leading market position in the field of aluminum die casting, transforming grain into flour and feeds, and making pasta and chocolate, but also in vacuum thin-film coating.

Within Bühler, we are stronger than ever and in an even better position to drive our most modern coating solution, process expertise and 1st class service and thus maintain our leading role in optical thin-film vacuum deposition equipment. Over the next few years, we want to focus on our existing expertise in emerging markets with our most eco-friendly coating solution and an outstanding cost-performance ratio. Additionally, we will invest in high-quality technology for developed markets to provide new applications.

We are centering our efforts on ensuring our customers’ success by improving our core-component technologies with a strong focus on cost of ownership. Our advances, for example in architectural layer-stack design, aim not only for performance and reliability but also for cost efficiency.

Every year we spend a significant amount on basic research and applied development to further improve our technology with regard to quality and precision, sustainability, serviceability and the ecological footprint of our design and systems.

Sincerely yours

Antonio Requena
Managing director
Bühler Alzenau GmbH
Leybold Optics
Leybold Optics – portfolio overview.
Solutions for every challenge.

**SYRUSpro series**
Our SYRUSpro vacuum coater series sets the industry benchmark in production and R&D. This classic evaporation system produces excellent coatings at extremely competitive deposition rates and is also available in special configurations for infrared (IR) and ultraviolet (UV) wavelength regimes.

Page 8

**ARES series**
High productivity, lowest cost of ownership, production-proven. These are the highlights of the ARES series that has been developed to meet the requirements of mass-production-oriented markets, especially in Asia.

Page 14

**HELIOS series**
The HELIOS series sputtering tool is a flexible platform for fast, precise and fully-automated thin-film coatings. It specializes in high-quality optical coatings featuring very low absorption and scattering.

Page 16

**LEYBOLD OPTICS IBS**
LEYBOLD OPTICS IBS Technology is a proven technology for lowest absorption and scattering capabilities for high-end optical applications.

Page 20
NESSY series
The NESSY series is our latest-generation magnetron-sputtering system mainly used for the production of extreme ultraviolet (EUV) mirrors under ultra-high vacuum (UHV) conditions – for mass production and product development.

DEIMOS
Astronomical substrates of up to 4.5 m in diameter can be precisely sputtered within DEIMOS coaters, achieving highest reflectivity and durability values. The ease of substrate exchange is another noteworthy advantage.

STARpro
Based on a single-reactive magnetron configuration, the STARpro allows the manufacture of multiple-layer stacks consisting of SiO₂ and Si₃N₄. Its versatility combined with its ultra-compact design makes it a perfect choice for small production runs.

LEYBOLD OPTICS DLC
This high-vacuum coater uses plasma-enhanced chemical-vapor deposition (PECVD) technology for material deposition. The diamond-like carbon coatings produced are mainly used for optical- and thermal-imaging systems.

OPTEG OMF series
This ion beam figuring (IBF) technology is a dry error correcting and polishing process for the production of high-performance optics. While conventional polishing techniques reach their limits, IBF is the ideal solution to achieve ultra-precise surface finishes.
SYRUSpro series. Unsurpassed performance and productivity.

1. Planetary systems, calottes or full-domes
2. Proprietary optical monitoring systems
3. Optimized heater assembly (bottom and/or top)
4. Ergonomic human-machine interface
5. Pre-installed processes
6. Network integration and remote access
7. Customized thermal evaporator setups
8. Proprietary electron-beam guns
9. Proprietary plasma sources

Applications:
- Edge filters (short and long pass)
- Notch filters
- Narrow bandpass filters
- Dichroic color filters
- Polarization beam splitters
- (Super) AR coatings
- Endoscopes
- Laser mirrors
- Cold-light mirrors
- TCO layers
- Self-assembled nanostructures
**SYRUSpro series** –  
the benchmark for 24/7 optical-filter volume production

The SYRUSpro series is quite simply the industry benchmark in production and R&D. Decade-long perfection of plasma-ion-assisted deposition (PIAD) technology enables excellent coatings at extremely competitive deposition rates from deep-ultraviolet (DUV) via visible spectrum (VIS) up to the infrared (IR) spectral range.

Based on a large variety of proprietary components and Bühler Leybold Optics process control, the SYRUSpro series is customized to meet the most challenging individual needs.

With optical and/or physical monitoring to control layer growth, Bühler Leybold Optics’ SYRUSpro series delivers extremely high spectral performance and unmatched reproducibility at lowest cost-per-piece, thus maximizing the return-on-investment.

**Key benefits:**
- Far IR to deep UV wavelength spectrum
- Co-evaporation from two sources, with dual-rate and thickness control
- Leybold Optics LION and APSpro ion sources
- Integrated proprietary optical monitoring system
- Outstanding versatility through variety of options
- Eight different chamber sizes (700 up to 2800 mm)
- Substrates up to 1.1 m in size
- Fully modular and customizable concept
- Benchmark in cost-per-piece

**Unique reproducibility and precision**
Reproducibility and uniformity of 5 consecutive batches and 5 substrates for each run distributed over a single calotte of a UV-IR-cut filter produced in a SYRUSpro 1510.

---

The 25 different curves show only minimal deviations – a remarkable result.
SYRUSpro series – a universe full of options

The enormous range of options in the equipment of a SYRUSpro coater is one of its key features that make the difference and allows a perfect match to customer needs. The process library and the company’s experience with challenging specifications for IR, DUV and even extreme wavelength regimes are unrivaled in the industry.

Ultimately, it is the wealth of knowledge and experience that allows the Bühler Leybold Optics process experts to realize the one configuration that best matches the specific customer requirements. They understand the often complex interrelationships and come up with the ideal coater – almost always a SYRUSpro.

Broadest portfolio and experience in the market

Able to offer up to 8 different chamber sizes, Bühler Leybold Optics has the broadest experience to provide the perfect matching solution for any kind of business case.

Loading capacity Ø 65 mm lenses

Enlargement of chamber size is only possible with adequate components so as not to compromise coating quality.
SYRUSpro 1510

**Technical data**

<table>
<thead>
<tr>
<th>SYRUSpro</th>
<th>700</th>
<th>900</th>
<th>1100</th>
<th>1350</th>
<th>1500</th>
<th>1950</th>
<th>2100</th>
<th>2800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coating technology</td>
<td>Ion-assisted deposition (IAD), plasma-ion-assisted deposition (PIAD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coating materials</td>
<td>Every commonly used material (dielectrics, metals, fluorides, sulfides)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamber width [mm]</td>
<td>700</td>
<td>900</td>
<td>1100</td>
<td>1350</td>
<td>1500</td>
<td>1950</td>
<td>2100</td>
<td>2800</td>
</tr>
<tr>
<td>Chamber width [inch]</td>
<td>28</td>
<td>36</td>
<td>44</td>
<td>53</td>
<td>61</td>
<td>77</td>
<td>83</td>
<td>110</td>
</tr>
<tr>
<td>Floor space [m²]</td>
<td>11.2</td>
<td>16.4</td>
<td>17.3</td>
<td>20</td>
<td>25.9</td>
<td>38</td>
<td>41</td>
<td>55</td>
</tr>
<tr>
<td>Floor space [sq.ft.]</td>
<td>121</td>
<td>177</td>
<td>186</td>
<td>215</td>
<td>279</td>
<td>409</td>
<td>441</td>
<td>592</td>
</tr>
</tbody>
</table>

**Loading capacity Ø 65 mm**

| Calotte [pcs.] | 71 | 115 | 183 | 277 | 384 | * | * | * |
| Segmented dome [pcs.] | 3 x 23 | 3 x 37 | 4 x 42 | 4 x 56 | 6 x 54 | * | * | * |
| Planetary system [pcs.] | 25 | 43 | 73 | 79 | 112 | * | * | * |

(*) To be defined in accordance with customer requirements

**Pumping systems:**

- **Fore-vacuum:**
  - Standard pumps
  - Dry pumps

- **High-vacuum:**
  - Turbomolecular pumps
  - Diffusion pumps
  - Cryogenic pumps

**Heating systems:**

- Precise temperature ramp-up

- **Optional:**
  - Front or rear-side heating
  - Ceramic or metal heaters
  - Control via thermocouple or pyrometric, intermittent on substrate
  - High- or low-power sources

- **High-temperature option (> 400° C)**
Premium components for SYRUSpro.

**Substrate holders**
- Pallet substrate holders for flat rotation
- Segmented domes in variety of configurations
- High-precision full-domes for fast loading times
- Planetary drive-systems with double-rotation

**Evaporators**
- LEYBOLD OPTICS HPE 12/10 mid-size electron-beam gun
- LEYBOLD OPTICS HPE 12 large-volume electron-beam gun
- Single-boat thermal-resistance evaporator
- Triple-boat thermal-resistance evaporator

**Optical monitoring**
- Single-wavelength monitoring system LEYBOLD OPTICS OMS 5100
- Broadband optical-monitoring system LEYBOLD OPTICS BBM

**High-power plasma sources**
- LEYBOLD OPTICS APSpro with LaB6 cathode
- LEYBOLD OPTICS LION 300 based on ECWR
ARES series.
Getting the optimum in value for your investment.

ARES series – cost-effective production with high performance
The ARES series is Bühler Leybold Optics’ system for cost-optimized mass-production of optical components especially designed for East Asian countries.

The configuration is thoroughly streamlined according to the specific application, but never compromising on quality – a smart choice for the savvy investor.

Applications:
- AR coatings
- Anti-fingerprint coatings
- Color filters
- Edge filters
- Cold-light mirrors
- Touch screens

Key benefits:
- Optimum CAPEX performance ratio
- Optimized for East Asian requirements
- High throughput
### Technical data

<table>
<thead>
<tr>
<th>Systems</th>
<th>ARES 700</th>
<th>ARES 1100</th>
<th>ARES 1350</th>
<th>ARES 1500</th>
<th>ARES 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coating materials</td>
<td>All commonly used dielectrics, metals, fluorides, sulfides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coating technology</td>
<td>Ion-assisted deposition (IAD) / Plasma-ion-assisted deposition (PIAD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamber diameter [mm]</td>
<td>700</td>
<td>1100</td>
<td>1350</td>
<td>1500</td>
<td>1960</td>
</tr>
<tr>
<td>Chamber diameter [inch]</td>
<td>28</td>
<td>44</td>
<td>53</td>
<td>61</td>
<td>77</td>
</tr>
<tr>
<td>Floor space [m²]</td>
<td>11.2</td>
<td>20</td>
<td>23.7</td>
<td>25.9</td>
<td>38</td>
</tr>
<tr>
<td>Floor space [sq.ft.]</td>
<td>121</td>
<td>216</td>
<td>255</td>
<td>279</td>
<td>409</td>
</tr>
</tbody>
</table>

**Loading capacity Ø 65 mm**

| Calotte [pcs.] | 71 | 186 | 277 | 324 | * |
| Segmented dome [pcs.] | 3 x 23 | 4 x 42 | 4 x 63 | 6 x 54 | * |
| Planetary system [pcs.] | 25 | 73 | 79 | 112 | * |

---

**ARES 1350**

- Height: 2.7 m / 106“
- Floor space: 11.2 m² / 121 sq.ft.
- Chamber diameter: 1350 mm / 53“
HELIOS series. High-precision, high-yield coaters for top-grade products.

HELIOS series – the ultimate sputter coaters
This flexible sputter platform is ideal for fast, precise and fully-automated thin-film deposition. It specializes in high-quality optical coatings, featuring very low absorption and scattering.

Unsurpassed optical performance is ensured by the extremely dense, smooth, stoichiometric, and amorphous layers. Ultimate precision in layer-growth control is facilitated by an optical monitoring system for in-situ on-substrate measurements.

Key benefits:
- PARMS process technology
- No arcing and µ-arcing
- High and stable deposition rates
- On-substrate optical monitoring
- Extremely high process stability
- Thickness precision down to ultra-thin layers
- Filters with over 200 layers and 20 µm thickness
- Optimal film oxidation, high density and low loss
- Co-sputtering for intermediate index tuning
- Rapid prototyping and short time-to-market
- Fast (un)loading without breaking the vacuum

Applications:
- Laser-line filters
- Steep-edge filters
- Single- and multi-notch filters
- Laser mirrors
- Chirped mirrors
- Thin-film polarizers
- Beam splitters
- Bio sensors
**PARMS process technology**

The plasma-assisted reactive magnetron-sputtering (PARMS) technology allows for the deposition of metal oxides with high- and low-refractive indices by combining mid-frequency (MF) and radio-frequency (RF) sputter technologies over two magnetrons.

**Parms technical principle:**

---

**On-substrate optical monitoring**

The LEYBOLD OPTICS OMS 5100 is the premium tool for in-situ optical monitoring. The optical thickness of the coated layer is measured either on a stationary test-glass or – for more accuracy – directly on the substrate via intermittent mode.

**4-fold-notch filter, AOI = 10°**

---

**Technical data**

<table>
<thead>
<tr>
<th>System</th>
<th>HELIOS 400</th>
<th>HELIOS 800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>Plasma-assisted reactive magnetron-sputtering (PARMS)</td>
<td></td>
</tr>
<tr>
<td>Applications</td>
<td>DC sputtering (optional: HF sputtering)</td>
<td></td>
</tr>
<tr>
<td>Coating material</td>
<td>SiO₂, Nb₂O₅, Ta₂O₅, ZrO₂, HfO₂, AlO₃, Si₃N₄</td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td>12” pcs. at Ø 125 mm / 5”</td>
<td>12” pcs. at Ø 200 mm / 8”</td>
</tr>
<tr>
<td>Source positions (max. 4)</td>
<td>1 and 2 (standard) Dual-magnetron</td>
<td>16” pcs. at Ø 100 mm / 4”</td>
</tr>
<tr>
<td></td>
<td>3 (optional) Single-magnetron</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 (standard) RF plasma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coating Ø (standard) ≤100 mm / ≤ 4”</td>
<td>≤ 200 mm / ≤ 8”</td>
</tr>
<tr>
<td></td>
<td>(optional)</td>
<td></td>
</tr>
<tr>
<td>Layer monitoring</td>
<td>Time control Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Optical monitoring</td>
<td>LEYBOLD OPTICS OMS 5100</td>
<td>LEYBOLD OPTICS OMS 5100</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Width x length x height 5.7 m x 3.4 m x 2.6 m 223° x 134° x 102°</td>
<td>7.3 m x 6.2 m x 3.0 m 288° x 242° x 118°</td>
</tr>
<tr>
<td>Site requirements</td>
<td>Electric power 46 kVA</td>
<td>110 kVA</td>
</tr>
<tr>
<td></td>
<td>Line voltage 400 VAC, 50/60 Hz</td>
<td>400 VAC, 50/60 Hz</td>
</tr>
<tr>
<td></td>
<td>System weight 3420 kg</td>
<td>4200 kg</td>
</tr>
</tbody>
</table>

(*) One substrate less when optical monitoring is used.
HELIOS 800. High-precision, high-yield coaters for mass production.

HELIOS 800 with autoloader – well established in semiconductor industry
The highly precise coating capabilities paired with the automatic loading system makes the HELIOS 800 machine an ideal choice for coating 8” wafers from glass or silicon material. Due to the availability of three loading locks, the machine can be prepared for three continuing and unattended production runs, thus perfectly matching the demands for mass production applications. Of course the machine can be delivered with a SECS/GEM interface for data exchange and remote control via customers host and data analyzing system.

For processes where frequent changes of the monitoring glass are needed, the loading lock can be easily prepared for automated exchange of the glasses without operator intervention. In such the machine can be prepared and started during the first shift and run production during the next both shifts without any support from the outside.

Key benefits:
- Direct on wafer sputtering
- Optical monitoring with automated test slight exchange
- Unattended operation until the process has been finished
- SECS/GEM Interface

Applications:
- Laser-line filters
- Steep-edge filters
- Single-/multi-notch filters
- Laser mirrors
- Chirped mirrors
- Thin-film polarizers
- Beam splitters
- Bio sensors
- Consumer electronics
- ADAS sensoric

1 Dual-magnetron-sputtering modules
2 RF plasma source
3 On-substrate optical monitoring
4 Coating chamber permanently under vacuum
5 Automatic loading system with three load locks
6 Electrical control cabinet with graphical user interface (GUI)
**Si:H₂ Process**

The optical properties of magnetron sputtered Si-layer can be adjusted by adding hydrogen (H₂) to the coating chamber, thus achieving highly transparent layers at 830 nm.

Bandpass filters (Si:H₂/SiO₂) with low angle shifts were manufactured on HELIOS 800.

**Low angle shift filter**

Example of how theory and prototype coating of an advanced low angle shift filter perfectly matches when produced with HELIOS 800.
LEYBOLD OPTICS IBS.
Ultra-high precision thin-film coatings.

With LEYBOLD OPTICS IBS 1400 and 1600, Bühler Leybold Optics offers an ion-beam sputtering system for the production of high-precision optical coatings. The technology is well known for extremely low-loss optical coatings and is therefore especially suitable for the production of laser optics.

The machine is a batch type system, optional with an automatic load lock system and equipped with an extremely powerful 3-grid RF ion-beam source to be able to produce also large substrates with corresponding quality and speed.

LEYBOLD OPTICS IBS – the ultimate ion-beam sputter coater for your laser, medical, metrology, microscopy and telecom application.

**Key benefits:**
- Lowest scatter values and defect densities
- Coating of substrates up to Ø 600 mm
- Highest uniformities of ±0.3 %
- Lowest defect densities due to mask-less deposition & operation without shutter
- Coating of curved & large substrates
- Highest flexibility of target material

**Options:**
- Automatic load lock system
- Additional RF plasma assist source
- Broad Band Monitoring (BBM)
Technical data

<table>
<thead>
<tr>
<th>Systems</th>
<th>LO IBS 1400</th>
<th>LO IBS 1600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coating Technology</td>
<td>Ion beam sputtering with 3-Grid RF source</td>
<td></td>
</tr>
<tr>
<td>Systems</td>
<td>High precision (HP)</td>
<td></td>
</tr>
<tr>
<td>Laser application</td>
<td>1 x diameter 400 mm substrate</td>
<td>1 x diameter 600 mm substrate</td>
</tr>
<tr>
<td>Telecom application</td>
<td>1 x diameter 304 mm (12&quot;) substrate</td>
<td></td>
</tr>
<tr>
<td>Medical/Metrology/Microscopy</td>
<td>4 x diameter 350 mm substrate</td>
<td></td>
</tr>
<tr>
<td>Coating materials</td>
<td>Metallic / dielectric material</td>
<td></td>
</tr>
<tr>
<td>Target configuration</td>
<td>3 – Target assembly</td>
<td></td>
</tr>
<tr>
<td>Sources</td>
<td>Sputter source 3 Grid RF 220 mm</td>
<td>Sputter source 3 Grid RF 220 mm</td>
</tr>
<tr>
<td>Assist source</td>
<td>LION 100 RF (Single Grid)</td>
<td></td>
</tr>
<tr>
<td>Layer monitoring</td>
<td>Time control</td>
<td>Yes</td>
</tr>
<tr>
<td>Optical monitoring</td>
<td>LEYBOLD OPTICS CMS 5100 Optional: LEYBOLD OPTICS BBM</td>
<td></td>
</tr>
<tr>
<td>Vacuum system</td>
<td>Pre-vacuum pump</td>
<td>Oil-free pump system</td>
</tr>
<tr>
<td></td>
<td>High-vacuum pump</td>
<td>Cryo-pump system</td>
</tr>
<tr>
<td></td>
<td>Turbo molecular pump system</td>
<td></td>
</tr>
<tr>
<td>Floor space</td>
<td>[m] 3.3 x 5.1 x 2.9</td>
<td>[m] 3.5 x 5.4 x 2.9</td>
</tr>
<tr>
<td></td>
<td>[inch] 130 x 200 x 114</td>
<td>[inch] 134 x 212 x 114</td>
</tr>
<tr>
<td>Site requirements</td>
<td>Electric power 60 kVA</td>
<td>Electric power 66 kVA</td>
</tr>
<tr>
<td></td>
<td>Line voltage 400 V AC, 50/60 Hz</td>
<td>Line voltage 400 V AC, 50/60 Hz</td>
</tr>
<tr>
<td></td>
<td>System weight 6700 kg</td>
<td>System weight 7000 kg</td>
</tr>
</tbody>
</table>

Markets & applications:

- Laser optics
  - thin-film components:
    - AR/HR (antireflec/mirror)
    - Gyroscope mirrors
      (Lowest total losses scattering and absorption, Highest reflection)
    - Various coatings for laser components

- Medical, Metropoly, Microscopy
  - thin-film components:
    - Bandpass filters
    - Beam splitters
      (polarizing, non polarizing)
    - Edge filters
    - Dielectric mirrors
    - Metal/Dielectric mirrors

- Telecom
  - thin-film components:
    - LAN-WDM
    - CWDM
    - DWDM
NESSY series.
The sputter equipment for EUV applications.

Key benefits:
- Extremely consistent layer-thickness uniformity
- UHV base pressure: < 9 * 10–9 mbar
- Outstanding, defect-free film quality
- Statistical layer precision in subatomic range
  (e.g. 7 nm +/- 0.25 %)
- Suited for numerous materials
  (including Mo and Si for EUV mirrors)
- Advanced layer functions
  (e.g. diffusion barrier and capping layers)
- Adjustable sputter distance
- Substrate height including carrier up to 240 mm
- Substrates sizes up to Ø 660 mm
NESSY series – sputtered layers with ultimate precision

This magnetron-sputtering system used for ultra-high vacuum regimes (UHV) excels with unmatched levels of layer precision through its unique substrate handling with double rotation. Thus it is an ideal tool for the production of mirrors in the x-ray or extreme-ultraviolet (EUV) spectral range. The reflectance values realized on multi-layer stacks come close to the theoretical threshold with economic cost-per-piece ratios in parallel. As such the NESSY platform is equally suited for both series production and for product development at the technological limit.

Application potential

Extreme layer specifications like molybdenum/silicon multi-layer mirrors with maximum reflectance at a wavelength of 13.5 nm, which are of crucial importance as condenser or projector mirrors in lithography equipment, can be realized using the NESSY series. The potential of the NESSY series, however, stretches way beyond this highly specific use. The wide variety of sputtered materials, together with the ability to handle large or complex-shaped substrates, makes the NESSY series ideally suited for the development of novel applications and components. If you have ideas and requirements at the edge of today’s technological feasibility, just contact us – we’ll accept the challenge!

Unmatched thickness uniformity

Excellent stability of sputter process and extreme levels of layer-thickness precision is a result of careful management of the substrate movement and minimized mechanical tolerances at the substrate holder. With additional double-rotation and varying speed profiles, the NESSY series bridges the gap to the subatomic uniformity values necessary in, for example, EUV optics applications.

Uniformity of molybdenum single layer measured by optical density. The data show ± 0.15 % over 450 mm diameter in the optimized case.
**Technical data**

<table>
<thead>
<tr>
<th>Systems</th>
<th>NESSY 1200</th>
<th>NESSY 1900</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coating technology</td>
<td>DC or DC pulsed sputtering (optional: RF sputtering)</td>
<td></td>
</tr>
<tr>
<td>Coating material</td>
<td>Mo, Si, Cr, Sc and different materials for diffusion-barrier layers and capping layers</td>
<td></td>
</tr>
<tr>
<td>Sputter source</td>
<td>Up to 6 PK</td>
<td>Up to 6 PK</td>
</tr>
<tr>
<td></td>
<td>250 mm x 100 mm</td>
<td>600 mm x 125 mm</td>
</tr>
<tr>
<td>Base pressure</td>
<td>$9 \times 10^{-9}$ mbar</td>
<td>$9 \times 10^{-9}$ mbar</td>
</tr>
<tr>
<td>Planetary-drive speed</td>
<td>0 – 5 rpm</td>
<td>0 – 5 rpm</td>
</tr>
<tr>
<td>Rotation-table speed*</td>
<td>0 – 500 rpm</td>
<td>0 – 500 rpm</td>
</tr>
<tr>
<td>Loading capacity (standard)</td>
<td>1 x Ø 200 mm / 8”</td>
<td>1 x Ø 300 mm / 12”</td>
</tr>
<tr>
<td></td>
<td>max. 20 kg (incl. carrier)</td>
<td>max. 30 kg (incl. carrier)</td>
</tr>
<tr>
<td>Loading capacity (optional)</td>
<td>n.a.</td>
<td>1 x ≤ Ø 660 mm / 26”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>max. 100 kg* (incl. carrier)</td>
</tr>
<tr>
<td>Floor plan layout**</td>
<td>Footprint 5.8 m x 4.5 m / 228” x 177”</td>
<td>7.0 m x 6.5 m / 276” x 256”</td>
</tr>
<tr>
<td>Site requirements</td>
<td>System height 2.7 m / 106”</td>
<td>2.9 m / 114”</td>
</tr>
<tr>
<td>Electric power</td>
<td>94 kVA</td>
<td>94 kVA</td>
</tr>
<tr>
<td>Line voltage</td>
<td>400 VAC, 50/60 Hz</td>
<td>400 VAC, 50/60 Hz</td>
</tr>
<tr>
<td>System weight**</td>
<td>7500 kg</td>
<td>9700 kg</td>
</tr>
</tbody>
</table>

(*) For heavy substrates the rotation speed is limited

(**) System weight and dimensions can change in accordance with customer requirements
DEIMOS 5500.
High-quality coatings for astronomical mirrors.

DEIMOS 5500 – the new sputter coater for substrates up to Ø 4.5 m / 15 ft.

The DEIMOS 5500 vacuum coating system is designed for the coating of astronomical mirrors by means of sputter technology. Typically, aluminum (Al) and silver (Ag) targets are used to form protective and enhancing layers in order to achieve the highest reflectance and durability.

Prior to processing, both the substrate and the chamber will be pre-cleaned by either mid-frequency (MF) or direct current (DC) glow discharge.

For easy substrate exchange, the lower chamber-half is mounted on a rail system so that it can be easily moved to a clear space to allow access for the substrate handling crane.

Key benefits:
- 4-magnetron assembly
- Highest reflection and coating durability
- Movable cathode inclination for perfect adaptation to substrate curvature and excellent layer uniformity
- Coating of curved substrates up to Ø 4.5 m / 15 ft.
- Protected and enhanced Al or Ag mirrors
- Pre-cleaning of chamber and substrate via MF or DC glow discharge
- Lower chamber-half on rails for easy substrate exchange
### Technical data

#### General design features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loading capacity</td>
<td>Up to 8 tons weight</td>
</tr>
<tr>
<td>Max. substrate Ø</td>
<td>4.5 m / 15 ft.</td>
</tr>
<tr>
<td>Rate monitoring</td>
<td>4 x quartz-crystal head</td>
</tr>
<tr>
<td>Remote access</td>
<td>LAN/WLAN/air card</td>
</tr>
</tbody>
</table>

#### Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cathodes (4 pcs.)</td>
<td>LEYBOLD OPTICS</td>
</tr>
<tr>
<td>Sputter target</td>
<td>Al, Ag, Nb, Si</td>
</tr>
<tr>
<td>Sputter power supply</td>
<td>DC and DC pulsed</td>
</tr>
<tr>
<td>Uniformity</td>
<td>&lt; ± 5 %</td>
</tr>
</tbody>
</table>

---

### Deimos 5500

![Deimos 5500 diagram](image-url)

---

---
STARpro. Versatile coating system for small-batch optical filter production.

Small, fast and precise
Bühler Leybold Optics’ STARpro is a reactive single magnetron-sputtering system that covers a wide range of applications through the use of Si$_3$N$_4$ and SiO$_2$ multi-layers. The system is very easy to install and operate. Moreover, the STAR achieves spot-on accuracy and high reproducibility throughout the entire target lifetime via the implementation of the premium optical monitoring system LEYBOLD OPTICS OMS 5100.

Applications:
- Anti-reflection (AR) coatings
- Bandpass filters
- Edge filters
- Dielectric mirrors
- Dichroics

Key benefits:
- Separate load-lock chamber for:
  - higher process stability
  - low particle contamination
  - Adjustable sputter distance
  - Planetary system for high uniformity
  - High deposition rates of up to 2 nm/s
- Plug-and-play:
  - Extremely easy to install and operate
- Very compact footprint (~1 m$^2$/11 sq. ft.)
- All components in one base frame

Separate load-lock
Adjustable sputter distance
Ergonomic graphical user-interface (GUI)
Integrated cooling water system
Three gas cylinders can be incorporated
Technical data

<table>
<thead>
<tr>
<th>General features</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loading capacity</td>
<td>Cathode</td>
</tr>
<tr>
<td>Max. substrate Ø</td>
<td>Sputter target</td>
</tr>
<tr>
<td>Process gas N₂, O₂, Ar</td>
<td>Incorporated</td>
</tr>
<tr>
<td>Optical monitoring</td>
<td>Sputter power supply</td>
</tr>
<tr>
<td>Remote access</td>
<td>Sputter rate Si</td>
</tr>
<tr>
<td></td>
<td>Sputter rate Si₃N₄</td>
</tr>
</tbody>
</table>

- Loading capacity: 4 substrates
- Max. substrate Ø: 80 mm / 3.51”
- Process gas: N₂, O₂, Ar
- Optical monitoring: LEYBOLD OPTICS OMS 5100
- Remote access: LAN/WLAN/air card

Components

- Cathode: LEYBOLD OPTICS PK150
- Sputter target: Silicon (Si)
- Sputter power supply: DC pulsed
- Sputter rate SiO₂: 1.2 – 2.0 nm/s
- Sputter rate Si₃N₄: 0.7 – 1.2 nm/s

IR-cut filter

Excellent performance with the first run due to LEYBOLD OPTICS OMS 5100 in-situ optical monitoring system.

STARpro

Dimensions:
- Width: 2 m / 79”
- Height: 2.2 m / 88”
- Depth: 1.2 m / 47”
- Height of Cloud Chamber: 0.8 m / 32”
LEYBOLD OPTICS DLC.  
The reference high-precision PECVD system.

LEYBOLD OPTICS DLC 600 –  
the diamond-like carbon coating system

The LEYBOLD OPTICS DLC 600 coater operates under high-vacuum conditions and uses plasma-enhanced chemical-vapor deposition (PECVD) technology. These machines are used by industry leaders for precision optics applications to produce mainly optical and thermal imaging systems. The Bühler Leybold Optics R&D and process team is your partner for customized processes.

Key benefits:
- Benchmark uniformity across entire coating area
- Excellent reproducibility via optical monitoring
- Wide variety of substrate sizes
- Suitable for flat and curved substrates
- Highest end-product quality

Applications:
- Diamond-like carbon (DLC) layers
- Anti-reflective coatings
- Substrates: Ge, Si and others
- Optical imaging
- Thermal imaging
- Night-vision equipment
- Distance control
## Technical data

<table>
<thead>
<tr>
<th>Coating technology</th>
<th>PECVD coating system (Plasma-enhanced chemical-vapor deposition)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coating layer</td>
<td>Diamond-like carbon (DLC)</td>
</tr>
<tr>
<td>Capacity</td>
<td>Turntable with Ø 465 mm / 18.3”</td>
</tr>
<tr>
<td>Power supply (MF)</td>
<td>13.56 MHz</td>
</tr>
</tbody>
</table>

### Standard anti-reflection (AR) processes*
- On Ge: $T_a@8.0 - 11.5 \mu m$
- On Ge: $T_a@3.5 - 5.0 \mu m$
- On Si: $T_a@3.5 - 5.0 \mu m$

### Layer monitoring
- Time control: Yes
- Optical monitoring: LEYBOLD OPTICS OMS 5100

### Site requirements
- Footprint: 4.4 m x 3.3 m / 173” x 128”
- Electric power: 23 kVA
- Line voltage: 400 VAC, 3-phase, 50/60 Hz
- System weight: 1500 kg

(*) Other processes on request

---

## Uniformity characteristics

**Static Distribution**
- Distribution in %

**Dynamic Distribution over the turntable**
- Distribution in %

Measured optical properties across different substrate positions without rotation.

The operation in dynamic mode with rotating turntable shows perfect uniformity.
**Leybold Optics – precision monitoring.**
**Total process control – perfect product quality.**

**Stationary optical monitoring set-ups**
- Optical monitoring in reflection mode
- Test-glass exchanger in the center

- Optical monitoring in transmission mode
- Test-glass exchanger in the center

**Intermittent optical monitoring set-ups**
- Optical monitoring directly on moving substrates
- Test-glass exchanger on calottes

- Optical monitoring directly on moving substrates
- Substrates moving on planetary carriers

- Optical monitoring directly on moving substrates
- Substrates rotating on HELIOS turntable at high-speed

Bühler Leybold Optics has been setting benchmarks in optical monitoring for decades. Direct intermittent measurement – the breakthrough in optical monitoring – was introduced first by Leybold Optics and is used in the SYRUSpro and HELIOS series.

Film design and monitor run-sheet data are interfaced with the coating equipment using LMR or LPR files. Both file formats were invented by Leybold Optics, whereas LMR files are usually generated by most commonly used thin-film design software programs available on the market.

The systems are supported by simulation and pre-production analyzing tools, thus virtually eliminating the need for test- or calibration-runs.
## Technical data

<table>
<thead>
<tr>
<th>Detector type</th>
<th>LEYBOLD OPTICS OMS S100</th>
<th>LEYBOLD OPTICS WB-OMS</th>
<th>LEYBOLD OPTICS BBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single (PMT, Si, InGaAs, PbS)</td>
<td>Si</td>
<td>CcD array 2048 pixel</td>
<td></td>
</tr>
<tr>
<td>Grating monochromator</td>
<td>Polychromator</td>
<td>Polychromator</td>
<td></td>
</tr>
<tr>
<td>Dynamic range</td>
<td>26 bit</td>
<td>16 bit</td>
<td>16 bit</td>
</tr>
<tr>
<td>Detector noise rms @ 400 nm</td>
<td>0.0025 %</td>
<td>0.03 %</td>
<td>0.4 %</td>
</tr>
<tr>
<td>Detector noise rms @ 1000 nm</td>
<td>0.001 %</td>
<td>0.05 %</td>
<td>0.4 %</td>
</tr>
<tr>
<td>rms detector noise best case</td>
<td>0.001 %</td>
<td>0.01 %</td>
<td>0.3 %</td>
</tr>
<tr>
<td>Continuous measurement for stationary measurement</td>
<td>Optional: light chopper up to 80 Hz</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Intermittent measurement</td>
<td>Triggered by incremental sensor</td>
<td>Triggered by incremental sensor</td>
<td>Triggered by incremental sensor</td>
</tr>
<tr>
<td>Min. data acquisition time</td>
<td>0.8 ms</td>
<td>1.1 ms</td>
<td>2 ms</td>
</tr>
<tr>
<td>Time jitter for measurement</td>
<td>&lt; 0.05 ms</td>
<td>&lt; 0.1 ms</td>
<td>&lt; 2 ms</td>
</tr>
<tr>
<td>Optical resolution (FWHM)</td>
<td>0.5 nm – 8.8 nm controllable</td>
<td>3.5 nm</td>
<td>1 nm Optional: NIR 5 nm</td>
</tr>
<tr>
<td>Useful wavelength range with halogen lamp</td>
<td>330 nm – 2500 nm</td>
<td>400 nm – 1000 nm</td>
<td>380 nm - 1050 nm Optional: NIR 380 nm – 1700 nm</td>
</tr>
<tr>
<td>Useful wavelength range with deuterium lamp</td>
<td>200 nm – 360 nm</td>
<td>--</td>
<td>250 nm – 380 nm</td>
</tr>
</tbody>
</table>

## Data evaluation and software features

<table>
<thead>
<tr>
<th>In-situ monitor</th>
<th>LEYBOLD OPTICS OMS S100</th>
<th>LEYBOLD OPTICS WB-OMS</th>
<th>LEYBOLD OPTICS BBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensity vs. time @ single wavelength</td>
<td>Intensity vs. time @ single wavelength plus Transmittance vs. wavelength</td>
<td>Transmittance vs. wavelength</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thickness control</th>
<th>LEYBOLD OPTICS OMS S100</th>
<th>LEYBOLD OPTICS WB-OMS</th>
<th>LEYBOLD OPTICS BBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>End-point control by monochromatic strategies (Turning-point, online corrected trigger-point)</td>
<td>End-point control by monochromatic strategies (Turning-point, online corrected trigger-point)</td>
<td>End-point control by calculated thickness</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Re-engineering of thickness errors</th>
<th>LEYBOLD OPTICS OMS S100</th>
<th>LEYBOLD OPTICS WB-OMS</th>
<th>LEYBOLD OPTICS BBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offline based on slow spectral scan between the layers</td>
<td>Offline</td>
<td>Online</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Re-optimization of remaining layers</th>
<th>LEYBOLD OPTICS OMS S100</th>
<th>LEYBOLD OPTICS WB-OMS</th>
<th>LEYBOLD OPTICS BBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offline based on slow spectral scan between the layers</td>
<td>Offline based on saved spectra</td>
<td>Offline based on saved spectra Optional: online available</td>
<td></td>
</tr>
</tbody>
</table>

## Key benefits of the systems

<table>
<thead>
<tr>
<th>LEYBOLD OPTICS OMS S100</th>
<th>LEYBOLD OPTICS WB-OMS</th>
<th>LEYBOLD OPTICS BBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest stability and accuracy</td>
<td>Monochromatic and broadband monitor in one system</td>
<td>Easy-to-use. No monitor run sheet required</td>
</tr>
<tr>
<td>Premium product with unique reproducibility</td>
<td>High flexibility of end-point control</td>
<td>High light-sensitivity</td>
</tr>
<tr>
<td>High degree of error compensation for many layer systems</td>
<td>Re-engineering capability</td>
<td>Re-engineering capability</td>
</tr>
<tr>
<td>High tolerance to systematic errors (Calibration, dispersion n,k)</td>
<td>Powerful and easy-to-use graphical user-interface (GUI)</td>
<td>Re-optimization capability</td>
</tr>
</tbody>
</table>
Leybold Optics APSpro – plasma sources. Most powerful device in the market.

LEYBOLD OPTICS APSpro
Bühler Leybold Optics’ proprietary technology APS (Advanced Plasma Source) was introduced in 1992 and delivers maximum performance and productivity paired with its unique ability to produce shift-free optical coatings. In contrast to other sources in the market, low- and high-index materials can be applied with sufficient densification but without additional heating – even for SiO₂. While the main applications of the plasma-ion-assisted deposition (PIAD) process lie in coating materials such as metal oxides and nitrides, it can, however, also be used in coating pure metals and non-metal oxides.

Key benefits:
- Perfect, shift-free spectral performance
- Dense and extremely smooth films
- High deposition rates
- High refractive-index layers
- Wide-angle characteristics
- Enormous library of established processes

Technical data APSpro

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge current</td>
<td>Typical 65 A (max. 100 A)</td>
</tr>
<tr>
<td>Discharge voltage</td>
<td>≤ 200 V</td>
</tr>
<tr>
<td>Discharge power</td>
<td>≤ 15 kW</td>
</tr>
<tr>
<td>Bias voltage</td>
<td>55 - 200 V</td>
</tr>
<tr>
<td>Heater power</td>
<td>1.8 kW</td>
</tr>
<tr>
<td>Process gas</td>
<td>O₂ / Ar flow controller</td>
</tr>
<tr>
<td>Ion current density</td>
<td>1300 µA/cm² @ 450 nm</td>
</tr>
<tr>
<td>Ion energy</td>
<td>20 – 250 eV</td>
</tr>
</tbody>
</table>

Perfect shift-free characteristics

Optical filter created with APSpro at different temperatures.
Leybold Optics Lion – RF plasma sources.
Ideal for high-performance coatings.

LEYBOLD OPTICS LION
The LEYBOLD OPTICS LION RF source is based on the electron cyclotron wave resonance principle (ECWR). It is completely integrated in our control systems and dedicated for use in large coating systems like the SYRUSpro 1350 and SYRUSpro 1500. These ion sources combine optimum process operation with ease-of-use and low production cost. Moreover, a single grid (mesh) allows for easy and quick maintenance.

Key benefits:
- Ideal for large chambers
- High power to cover large areas
- High deposition rates
- Layers with very low losses
- Low absorption and scattering
- Easy maintenance
- Low running cost

Technical data LION

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free grid-diameter (aperture)</td>
<td>300 mm</td>
</tr>
<tr>
<td>RF power</td>
<td>≤ 6.5 kW</td>
</tr>
<tr>
<td>Total ion current</td>
<td>≤ 3 A</td>
</tr>
<tr>
<td>Ion energy</td>
<td>90 – 900 eV</td>
</tr>
<tr>
<td>Typical gasses</td>
<td>O₂/Ar/N₂</td>
</tr>
<tr>
<td>Matching network</td>
<td>Computerized auto-matching</td>
</tr>
<tr>
<td>Ion extraction</td>
<td>Single grid (mesh)</td>
</tr>
</tbody>
</table>

Excellent uniformity over Ø 1400 mm dome (< ± 0.5 %)

Graphs showing transmittance for various wavelengths and substrates.
Leybold Optics – evaporator units.
High-performance components.

Thermal-resistance evaporators
Bühler Leybold Optics offers a wide variety of models featuring different numbers as well as volumes of boats. As a result, maximum flexibility combined with optimum equipment configuration can be realized for every application in machines of the SYRUSpro and ARES series.

Overview LEYBOLD OPTICS thermal evaporators

<table>
<thead>
<tr>
<th>System</th>
<th>Operation power</th>
<th>Evaporator boats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower-power thermal-resistance source</td>
<td>Single-source 7 V / 600 A</td>
<td>1</td>
</tr>
<tr>
<td>High-power thermal-resistance source</td>
<td>Single-source 3.5 V / 1200 A</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Twin-source 3.5 V / 1200 A</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Triple-source 3.5 V / 1200 A</td>
<td>3</td>
</tr>
<tr>
<td>High-volume thermal-resistance source</td>
<td>Hexagon source 3.5 V / 1200 A</td>
<td>6</td>
</tr>
</tbody>
</table>

Electron-beam guns – LEYBOLD OPTICS HPE series
Based on decades of experience in thin-film technology the LEYBOLD OPTICS HPE series is well known for the reliable evaporation of a large range of coating materials such as oxides, fluorides, metals and sulfides. As such, it is the ideal choice for ophthalmic and precision optics, electronics and optoelectronics applications.

Technical data LEYBOLD OPTICS HPE series

<table>
<thead>
<tr>
<th>System</th>
<th>HPE 6</th>
<th>HPE 12/10</th>
<th>HPE 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam power (max. output)</td>
<td>10 kW</td>
<td>10 kW</td>
<td>10 kW</td>
</tr>
<tr>
<td>Acceleration voltage (typical)</td>
<td>8 kV</td>
<td>8 kV</td>
<td>8 kV</td>
</tr>
<tr>
<td>Main deflection angle</td>
<td>270°</td>
<td>270°</td>
<td>270°</td>
</tr>
<tr>
<td>Operating vacuum (typical)</td>
<td>&lt; 5 x 10^-4</td>
<td>&lt; 5 x 10^-4</td>
<td>&lt; 5 x 10^-4</td>
</tr>
<tr>
<td>Filament voltage/current</td>
<td>10 V / 32 A</td>
<td>10 V / 32 A</td>
<td>10 V / 32 A</td>
</tr>
</tbody>
</table>

Cooling water

- Consumption rate: 10 l/min
- Inlet temperature (max.): 25 °C
- Inlet pressure: 5 – 6 bar
- Return pressure (max.): 0.5 bar

Dimension (overall)

- Width: 126 mm
- Length: 380 mm
- Height: 144 mm

Key benefits of LEYBOLD OPTICS evaporator units:
- Large variety of evaporation materials
- Wide deflection angle of 270°
- Programmable range of evaporation patterns
- Crucible types: ring groove, single- or multi-pocket
- Indirect, direct or intensive cooling capabilities
- Quick exchange of cathode and crucible
- Long lifetimes of cathodes and filaments
- Service connections to atmosphere
OPTEG OMF series.
Beyond measurable precision with IBF.

Ultra-precision as standard
The OPTEG OMF series with ion beam figuring (IBF) technology is the ideal solution for the production of surfaces with an extreme high precision of a few nanometers and a local resolutions in the submillimeter range.

It is a dry error correcting and polishing process under vacuum where accelerated argon atoms ablate nano-scaled particles from the surface of the workpiece.

Nearly all geometries and materials can be processed which makes it perfectly for a broad field of applications – from space, nanotechnology and reflector telescopes to semiconductors, photonics, research industry.

These IBF machines of type OMF are the excellent final processing step, which can be followed by further coating processes with the Bühler Leybold Optics coating machines.

Key benefits:
- Surface qualities of \( \lambda/200 \) and greater
- Processing across the entire substrate surface up to and beyond the edge
- 6-axis direct drive system
- Integrated diaphragm changer
- Integrated load lock for faster workpiece changeover
- High reproducibility

Applications:
- Lithography optics
- Telescope mirrors
- Deep and extreme UV (DUV/EUV)
- Laser crystals and optics
- Sharp-edged optics
- Precision asphere and freeform manufacturing
Material BK7: Before IBF (left) and final figure (right). Workpiece properties: flat, Ø 70 mm. 7 x better PV / 19.5 x better rms.

Material SiO2: Before IBF (left) and final figure (right). Workpiece properties: concave, Ø 200 mm, radius of curvature 339.28 mm. 6.8 x better PV / 15 x better rms.

Further advantages of IBF-technology:

- Easy to use and full deterministic processing
- Processing materials with difficult properties (e.g. extremely soft and porous)
- No force and pressure exerted to the sample (e.g. very thin and sensitive substrates)
- Production of complex optical geometry like aspherical and freeform is almost impossible by manual work
- Up to the edge processing with constant quality (increasing free aperture, ideal for segmented optics)
- Increased throughput / batch processing by full automation
- Predictable processing and lead times
- Treatment of single lens arrays in one batch (e.g. small lenses)
- In-situ etch rate measurement
- No human monitoring required
- Low operating costs and low maintenance requirements

Machine Portfolio

<table>
<thead>
<tr>
<th>Model</th>
<th>OMF 200</th>
<th>OMF 450</th>
<th>OMF 600</th>
<th>OMF 800</th>
<th>OMF 1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. diameter of flat samples</td>
<td>200 mm</td>
<td>450 mm</td>
<td>600 mm</td>
<td>800 mm</td>
<td>1200 mm</td>
</tr>
<tr>
<td>Max. weight of samples</td>
<td>35 kg</td>
<td>35 kg</td>
<td>100 kg</td>
<td>100 kg</td>
<td>200 kg</td>
</tr>
</tbody>
</table>

Options: Fully automated processing via robot handling and workpiece magazines – enables automatic loading and unloading of multiple workpieces for uninterrupted processing.
Bringing your company a step ahead.

**Automation solutions made by Bühler.**

Depending on the specific customer’s requirements our engineers will find the individual solution that perfectly matches to your requirements. This does not only count for the purely mechanical part for picking and placing, gripping or the selection of the required robot. Our goal is to serve our customers with a sustainable solution that covers all aspects to run your production and preferably without operator intervention.
Key benefits:
- Automatic loading and unloading of substrates for uninterrupted processing
- Smooth handling of precision parts without operator intervention.
- Enhance production speed, productivity and efficiency
Customer support and services. Always on hand to sustain your business.

Bühler Leybold Optics’ relationship with its customers does not end once the machines start production — it is a continuation and an extension of a close partnership. Wherever Bühler Leybold Optics machines are, one of the worldwide centers of competence is close to your site. The company therefore ensures that you receive the right support so that your machines deliver perfect product quality and benefit from high uptime.

Bühler’s worldwide customer service as well as the fast delivery of replacement and wear-and-tear parts are just two important aspects of customer support. Preventive maintenance and inspection together with machine reconditioning and upgrading round off the after-sales services. Contact information for Bühler’s worldwide services can be found on the company’s homepage: www.buhlergroup.com.

Bühler Leybold Optics’ service commitment to customers guarantees fast identification of parts, components or consumables, tracked and logged to ensure readiness for shipment within one day so that fast delivery to any country in the world is possible.

Bühler is a specialist and technology partner for precision optics coating solutions. With its expertise and over 150 years of experience, Bühler continuously rolls out unique and innovative solutions for its customers, helping them achieve success in the marketplace. The Bühler Group operates in more than 140 countries and has a global payroll of over 10,000.
Helpdesk
- Always available during German, US and Asian business hours: contact the Helpdesk of your local service or at headquarters. The phone numbers are:
  EUROPE: +49 6023 500 777 (or +41 71 955 1900)
  USA: +1 919 657 7100
  CHINA: +86 (10) 67803366-537
- Problems are analyzed promptly via remote diagnosis

Fitness check
Preventive maintenance and inspection
- Full check of all machine functions
- Comprehensive, customer-specific maintenance service for continued optimal productivity and cost savings when repairs are needed
- Monitoring of the maintenance cycle allows timely appointment scheduling

Flexcare / totalcare
Customer service and consultation
- Flexible and adapted to your needs, these service contracts consist of an annual contingency allowance of hours, selectable in different packages – BRONZE, SILVER and GOLD
- Qualified service engineers worldwide
- Quick response times through local resources and close cooperation with suppliers

Replacement parts and accessories
- Worldwide replacement-part-management network, shipment of main parts in one day
- Guaranteed original parts for safe production and highest uptime
- Proven quality for accessories for best qualitative products
- The parts are manufactured by Bühler Leybold Optics or by first-class material specialists like UMICORE with highest availability

Renovation of machines and assemblies
- Software optimization
- PLC and HMI exchange
- Full exchange of electric cabinet and PLC and HMI exchange
- Improved cycle times
- For Leybold Optics products and other machines

Overhaul and upgrades
- Upgrade to new components
- Machine extensions
- Improved performance and longer equipment life
- Used machines with “buy back option” for all Leybold Optics products and other machines

Relocation of machines
- Relocation of one machine or a full production site to another production location
- From a precision optics coater to a full production lab

Training
Thoroughly trained and motivated personnel will raise the quality standard that you achieve in utilizing Bühler equipment and will ensure your long-term success. Would you like to increase your employees’ level of training to the latest standards in maintenance and operations? To achieve this, Bühler offers you various training courses in a specialized Training Center. In a group of five persons and more, training can be tailored to specific requirements.
- Safety and regulations
- Basics of vacuum technology
- Basics of coating tools
- Basic theoretical training in equipment and technology
- Practical training in preventive maintenance
- Practical training in machine operation
- In-depth training on EB-Gun, Ion source, optical or physical measurement units and process analysis, leak detection, etc.