MicroMedia™. Quality meets efficiency.

Are you looking for higher production capacities, better energy efficiency or the next quality level of your product? Then join the large number of users, no matter if small or large scale, and experience the new dimension in wet grinding and dispersing.
Elaborate process technology.
Flexible use for various applications.

Liquid packaging inks
With MicroMedia™, Bühler sets new standards in the production of liquid packaging inks. Thanks to the high flow capability, a narrow particle size distribution can be achieved with minimum energy consumption. This leads to an improved color strength, transparency and gloss.

Inkjet inks
The use of small beads in the field of inkjet inks requires an optimal bead separation to maintain high recirculation flow rates. All of the components in the MicroMedia™ are finely tuned making handling of the micro beads effortless.

High-performance coatings
The wide parameter range of the MicroMedia™ allows an ideal adaption to the specific grinding requirements of different coatings. Additionally, Bühler’s highly sophisticated automation solutions result in high process reliability and traceability.

Benefits
- Cutting edge technology for better product quality
- Maximum energy efficiency due to smaller beads and highest power density
- Wide range of process chamber materials tailored to your needs

MicroMedia™ allows an extremely wide parameter range regarding power density, flow rate and bead sizes. In combination with the available material portfolio, the technology fits to almost any application in the wet grinding and dispersing industry.
Functional principle of MicroMedia™.

Patented technology for better product quality.

1. Screen (maximized size for highest flow capability)
2. Slots (real centrifugal bead separation)
3. Pin/counter pin (efficient activation of grinding beads)
4. Cooling
Compact design saves space/maximizes efficiency. Cutting-edge processing solutions.

1. Dosing of solid and liquid materials in the mixing tanks
2. Circulation between MacroMedia™ and the mixing tank
3. Transfer from the mixing tank to the recirculation tank via MacroMedia™
4. Circulation between MicroMedia™ and the recirculation tank
5. Transfer from the recirculation tank to the let-down tank via MicroMedia™
6. Addition of liquid components and transfer to the next production step

Process and plant engineering by Bühler

- Maximum availability, reliability and cost efficiency
- Supply of complete solutions
- Installation and commissioning worldwide
- Full support throughout the entire lifecycle of a plant
Examples from industrial practice.

Optimizations thanks to MicroMedia™.

Liquid packaging inks: Increased productivity
Significantly increased productivity by changing the bead mill type.

Previous process
- Fine grinding using the SuperFlow™ bead mill with a bead size of 0.8 mm and a gap size of 0.35 mm.
- Specific energy consumption for production: 350 kWh/t for a fineness of <5 μm

Benefits of production with smaller beads in the MicroMedia™
- Fine grinding using MicroMedia™ with a bead size of 0.3 mm
- Specific energy consumption is reduced to 200 kWh/t while plant capacity is increased by 75 % with no change in the quality level

Inkjet inks: Increased efficiency
Smaller beads reduce the energy consumption by 40 % for digital textile inks.

Previous process
- Fine grinding using MicroMedia™ with a bead size of 0.3 mm
- Specific energy consumption: 2500 kWh/t

Benefits of optimized production
- Reduction of bead size to 0.1 mm while maintaining recirculation flow rates
- Specific energy consumption is reduced by 40 % to 1500 kWh/t

High-performance coatings: Increased product quality
Setting up a completely new production concept for automotive coatings.

Previous process
- Two pass operation on SuperFlow™
- Production capacity of 120 kg/h

Benefits of production with integrated MicroMedia™
- Switch to recirculation operation using MicroMedia™
- Maximized recirculation flow rate up to 2500 kg/h resulting in a more narrow particle size distribution
- Increase of production capacity to 150 kg/h
Technical data MicroMedia[™]. Laboratory and production mills.

Type L (Laboratory)

![Diagram of Type L (Laboratory)](image)

<table>
<thead>
<tr>
<th>MicroMedia<sup>™</sup></th>
<th>L</th>
<th>X1</th>
<th>X2<sup>®</sup></th>
<th>X3<sup>®</sup></th>
<th>X4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive [kW]</td>
<td>2.2<sup>*</sup></td>
<td>5.5</td>
<td>22-63</td>
<td>22-63</td>
<td>90</td>
</tr>
<tr>
<td>Active volume of process chamber [l]</td>
<td>0.07 (70 cm³)</td>
<td>1.4</td>
<td>7.6</td>
<td>15.6</td>
<td>30.2</td>
</tr>
<tr>
<td>Bead separation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Applicable diameter of beads [µm]</td>
<td>20–200</td>
<td>20-800</td>
<td>20-800</td>
<td>20-800</td>
<td>20-800</td>
</tr>
<tr>
<td>Flow rate [l/h] up to</td>
<td>depending on viscosity, material and diameter of beads and pump, e.g. 10</td>
<td>400</td>
<td>3000</td>
<td>4000</td>
<td>8000</td>
</tr>
<tr>
<td>Cooling</td>
<td>outer stator</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>bottom of stator</td>
<td>–</td>
<td>–</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>inner stator</td>
<td>–</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>rotor (DraisResist<sup>™</sup>)</td>
<td>–</td>
<td>–</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Material rotor</td>
<td>DraisResist<sup>™</sup></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Polyamide</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Ceramic SSiC</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Ceramic ZrO<sub>2</sub></td>
<td>●</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Material stator</td>
<td>DraisResist<sup>™</sup></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Ceramic SSiC</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Ceramic ZrO<sub>2</sub></td>
<td>●</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Lifting device for grinding vessel</td>
<td>hydraulic hand pump</td>
<td>–</td>
<td>●</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>hydraulic foot pump</td>
<td>–</td>
<td>–</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Dimensions [mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>862</td>
<td>920</td>
<td>2110</td>
<td>2110</td>
<td>2,860</td>
</tr>
<tr>
<td>H0</td>
<td>–</td>
<td>1240</td>
<td>2580</td>
<td>2580</td>
<td>3430</td>
</tr>
<tr>
<td>H1</td>
<td>206</td>
<td>270</td>
<td>680</td>
<td>680</td>
<td>870</td>
</tr>
<tr>
<td>L</td>
<td>756</td>
<td>825</td>
<td>1550</td>
<td>1550</td>
<td>1940</td>
</tr>
<tr>
<td>L1</td>
<td>–</td>
<td>620</td>
<td>1200</td>
<td>1200</td>
<td>1380</td>
</tr>
<tr>
<td>W</td>
<td>617</td>
<td>480</td>
<td>857</td>
<td>857</td>
<td>1050</td>
</tr>
<tr>
<td>W1</td>
<td>–</td>
<td>650</td>
<td>1123</td>
<td>1123</td>
<td>1480</td>
</tr>
<tr>
<td>W2</td>
<td>–</td>
<td>750</td>
<td>1420</td>
<td>1420</td>
<td>1720</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>150</td>
<td>270</td>
<td>1640</td>
<td>1850</td>
<td>3420</td>
</tr>
</tbody>
</table>

● = Standard, – = not available. All data are approximate. Technical alterations reserved.

[*] = drive platform PML 2 – installed power not equivalent with power to be introduced into MicroMedia[™] L; MicroMedia[™] is a trademark of Bühler AG. [™] internationally patented, e.g. EP 1 943 022 B1 (2010), EP 1 992 412 B1 (2010) [®] Also available on the MicroMedia[™] platform.